Mixing Time and Stationary Expected Social Welfare of Logit Dynamics

Francesco Pasquale

Dipartimento di Informatica "R. Capocelli" Università di Salerno

joint work-in-progress with Vincenzo Auletta, Diodato Ferraioli, and Giuseppe Persiano

Roma, June 17, 2010

Outline

Framework Description

Examples

Research Directions

Game Theory

$$\mathcal{G} = ([n], \mathcal{S}, \mathcal{U})$$

- ▶ $[n] = \{1, ..., n\}$ players;
- ▶ $S = \{S_1, ..., S_n\};$ $S_i = \{ \text{ actions for player } i \};$
- ▶ $\mathcal{U} = \{u_1, \dots, u_n\};$ $u_i : S_1 \times \dots \times S_n \to \mathbb{R}$ utility functions

Game Theory

...in one slide

$$\mathcal{G} = ([n], \mathcal{S}, \mathcal{U})$$

- ▶ $[n] = \{1, ..., n\}$ players;
- \triangleright $S = \{S_1, \dots, S_n\};$ $S_i = \{\text{ actions for player } i\};$
- $\mathcal{U} = \{u_1, \dots, u_n\}; \quad u_i : S_1 \times \dots \times S_n \to \mathbb{R} \text{ utility functions}$

 $\mathbf{x} = (x_1, \dots, x_n) \in S_1 \times \dots \times S_n$ pure Nash equilibrium if for every

 $i \in [n]$ and for every $y \in S_i$

$$u_i(\mathbf{x}_{-i}, y) \leqslant u_i(\mathbf{x})$$

Game Theory

...in one slide

$$\mathcal{G} = ([n], \mathcal{S}, \mathcal{U})$$

- $\blacktriangleright [n] = \{1, \dots, n\} \text{ players};$
- ▶ $S = \{S_1, ..., S_n\}$; $S_i = \{ \text{ actions for player } i \}$;
- ▶ $\mathcal{U} = \{u_1, \dots, u_n\};$ $u_i : S_1 \times \dots \times S_n \to \mathbb{R}$ utility functions

 $\mathbf{x} = (x_1, \dots, x_n) \in S_1 \times \dots \times S_n$ **pure Nash** equilibrium if for every $i \in [n]$ and for every $y \in S_i$

$$u_i(\mathbf{x}_{-i},y) \leqslant u_i(\mathbf{x})$$

 $\mu = (\mu_1, \dots, \mu_n) \in \Delta(S_1) \times \dots \times \Delta(S_n)$ mixed Nash equilibrium if for every $i \in [n]$ and for every $\sigma \in \Delta(S_i)$

$$\mathbf{E}_{(\boldsymbol{\mu}_{-i},\sigma)}\left[u_{i}\right]\leqslant\mathbf{E}_{\boldsymbol{\mu}}\left[u_{i}\right]$$

Reaching equilibria

Dynamics: Choose a player, update her strategy, repeat.

Reaching equilibria

Dynamics: Choose a player, update her strategy, repeat.

Best response dynamics

At her turn, player i chooses the action $y \in S_i$ that maximizes her utility

$$u_i(\mathbf{x}_{-i}, y) \geqslant u_i(\mathbf{x}_{-i}, z)$$
 for every $z \in S_i$

Reaching equilibria

Dynamics: Choose a player, update her strategy, repeat.

Best response dynamics

At her turn, player i chooses the action $y \in S_i$ that maximizes her utility

$$u_i(\mathbf{x}_{-i}, y) \geqslant u_i(\mathbf{x}_{-i}, z)$$
 for every $z \in S_i$

Questions

Convergence

Reaching equilibria

Dynamics: Choose a player, update her strategy, repeat.

Best response dynamics

At her turn, player i chooses the action $y \in S_i$ that maximizes her utility

$$u_i(\mathbf{x}_{-i}, y) \geqslant u_i(\mathbf{x}_{-i}, z)$$
 for every $z \in S_i$

Questions

- Convergence
 If yes then...
- Speed of convergence.

Randomized Best Response

Logit Dynamics

Randomized Best Response: Choose for the next round strategy *y* with probability proportional to the returned utility.

Randomized Best Response

Logit Dynamics

Randomized Best Response: Choose for the next round strategy *y* with probability proportional to the returned utility.

$$\mathbf{x} \in S_1 \times \cdots \times S_n, \quad i \in [n], \quad y \in S_i \quad \Rightarrow \quad \sigma_i(y \mid \mathbf{x}) \sim e^{\beta u_i(\mathbf{x}_{-i}, y)}$$

Randomized Best Response

Logit Dynamics

Randomized Best Response: Choose for the next round strategy *y* with probability proportional to the returned utility.

$$\mathbf{x} \in S_1 \times \cdots \times S_n, \quad i \in [n], \quad y \in S_i \quad \Rightarrow \quad \sigma_i(y \mid \mathbf{x}) \sim e^{\beta u_i(\mathbf{x}_{-i}, y)}$$

$$\sigma_i(y \mid \mathbf{x}) = \frac{e^{\beta u_i(\mathbf{x}_{-i}, y)}}{\sum_{z \in S_i} e^{\beta u_i(\mathbf{x}_{-i}, z)}}$$

 $\beta =$ "Inverse noise"

Observation

- $\beta = 0$ players play uniformly at random;
- ho ho ho players play best response (u.a.r. over best responses if more than one)

Description

Logit dynamics [Blume, GEB'93]

From any profile \mathbf{x} , choose a player $i \in [n]$ u.a.r and update her action with probability $\sigma_i(\cdot \mid \mathbf{x})$.

$$P(\mathbf{x}, (\mathbf{x}_{-i}, y)) = \frac{1}{n} \sigma_i(y \mid \mathbf{x})$$

Description

Logit dynamics [Blume, GEB'93]

From any profile \mathbf{x} , choose a player $i \in [n]$ u.a.r and update her action with probability $\sigma_i(\cdot \mid \mathbf{x})$.

$$\begin{array}{c}
p \sim e^{\beta u_i(\mathbf{x}_{-i}, y)} \\
(\mathbf{x}_{-i}, y)
\end{array}
\qquad P(\mathbf{x}, (\mathbf{x}_{-i}, y)) = \frac{1}{n} \sigma_i(y \mid \mathbf{x})$$

This process defines an ergodic Markov chain

$$\{X_t: t\in\mathbb{N}\}, (\Omega, P).$$

...in one slide

$$\{X_t : t \in \mathbb{N}\}, (\Omega, P).$$

▶ Irreducible: for every $\mathbf{x}, \mathbf{y} \in \Omega$, $\exists t \in \mathbb{N} : P^t(\mathbf{x}, \mathbf{y}) > 0$;

$$\{X_t: t\in\mathbb{N}\}, (\Omega, P).$$

- ▶ Irreducible: for every $\mathbf{x}, \mathbf{y} \in \Omega$, $\exists t \in \mathbb{N} : P^t(\mathbf{x}, \mathbf{y}) > 0$;
- ▶ **Aperiodic**: for every **x**, gcd $\{t \ge 1 : P^t(x,x) > 0\} = 1$;

$$\{X_t: t\in\mathbb{N}\}, (\Omega, P).$$

- ▶ Irreducible: for every $\mathbf{x}, \mathbf{y} \in \Omega$, $\exists t \in \mathbb{N} : P^t(\mathbf{x}, \mathbf{y}) > 0$;
- ▶ Aperiodic: for every \mathbf{x} , $\gcd\{t \geqslant 1 : P^t(x,x) > 0\} = 1$;
- ▶ Stationary distribution: $\pi \in \Delta(\Omega)$, $\pi P = \pi$.

$$\{X_t: t\in\mathbb{N}\}, (\Omega, P).$$

- ▶ Irreducible: for every $\mathbf{x}, \mathbf{y} \in \Omega$, $\exists t \in \mathbb{N} : P^t(\mathbf{x}, \mathbf{y}) > 0$;
- ▶ Aperiodic: for every \mathbf{x} , $gcd\{t \ge 1 : P^t(x,x) > 0\} = 1$;
- ▶ Stationary distribution: $\pi \in \Delta(\Omega)$, $\pi P = \pi$.

Irreducible + Aperiodic = Ergodic
$$\Longrightarrow$$

 $\Longrightarrow \pi$ is unique and $P^t(\mathbf{x}, \cdot) \to \pi$

...in one slide

$$\{X_t: t\in\mathbb{N}\}, (\Omega, P).$$

- ▶ Irreducible: for every $\mathbf{x}, \mathbf{y} \in \Omega$, $\exists t \in \mathbb{N} : P^t(\mathbf{x}, \mathbf{y}) > 0$;
- ▶ Aperiodic: for every \mathbf{x} , $gcd\{t \ge 1 : P^t(x,x) > 0\} = 1$;
- ▶ Stationary distribution: $\pi \in \Delta(\Omega)$, $\pi P = \pi$.

Irreducible + Aperiodic = Ergodic
$$\Longrightarrow \pi$$
 is unique and $P^t(\mathbf{x},\cdot) \to \pi$

▶ Total variation distance $\mu, \nu \in \Delta(\Omega)$

$$\|\mu - \nu\| = \max_{A \subseteq \Omega} |\mu(A) - \nu(A)| = \frac{1}{2} \sum_{\mathbf{x} \in \Omega} |\mu(\mathbf{x}) - \nu(\mathbf{x})|$$

...in one slide

$$\{X_t: t\in \mathbb{N}\}, (\Omega, P).$$

- ▶ Irreducible: for every $\mathbf{x}, \mathbf{y} \in \Omega$, $\exists t \in \mathbb{N} : P^t(\mathbf{x}, \mathbf{y}) > 0$;
- ▶ Aperiodic: for every \mathbf{x} , $gcd\{t \ge 1 : P^t(x,x) > 0\} = 1$;
- ▶ Stationary distribution: $\pi \in \Delta(\Omega)$, $\pi P = \pi$.

Irreducible + Aperiodic = Ergodic
$$\Longrightarrow \pi$$
 is unique and $P^t(\mathbf{x},\cdot) \to \pi$

▶ Total variation distance $\mu, \nu \in \Delta(\Omega)$

$$\|\mu - \nu\| = \max_{A \subseteq \Omega} |\mu(A) - \nu(A)| = \frac{1}{2} \sum_{\mathbf{x} \in \Omega} |\mu(\mathbf{x}) - \nu(\mathbf{x})|$$

Mixing Time

$$t_{\mathsf{mix}}(\varepsilon) = \mathsf{min}\{t \in \mathbb{N} : \|P^t(\mathbf{x}, \cdot) - \pi\| \leqslant \varepsilon \text{ for all } \mathbf{x} \in \Omega\}$$

Definition

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U})$. Logit dynamics for G is the Markov chain with state space $\Omega = S_1 \times \cdots \times S_n$ and transition matrix

$$P(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{\beta u_i(\mathbf{x}_{-i}, y_i)}}{T_i(\mathbf{x})} \mathbb{I}_{\{y_j = x_j \text{ for every } j \neq i\}}$$

Definition

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U})$. Logit dynamics for G is the Markov chain with state space $\Omega = S_1 \times \cdots \times S_n$ and transition matrix

$$P(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{\beta u_i(\mathbf{x}_{-i}, y_i)}}{T_i(\mathbf{x})} \mathbb{I}_{\{y_j = x_j \text{ for every } j \neq i\}}$$

Logit Dynamics defines an ergodic Markov chain

▶ What is the **stationary distribution** π ?

Definition

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U})$. Logit dynamics for G is the Markov chain with state space $\Omega = S_1 \times \cdots \times S_n$ and transition matrix

$$P(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{\beta u_i(\mathbf{x}_{-i}, y_i)}}{T_i(\mathbf{x})} \mathbb{I}_{\{y_j = x_j \text{ for every } j \neq i\}}$$

Logit Dynamics defines an ergodic Markov chain

- ▶ What is the stationary distribution π ?
- ▶ What is the **stationary expected social welfare E** $_{\pi}$ [W]?

Definition

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U})$. Logit dynamics for G is the Markov chain with state space $\Omega = S_1 \times \cdots \times S_n$ and transition matrix

$$P(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{\beta u_i(\mathbf{x}_{-i}, y_i)}}{T_i(\mathbf{x})} \mathbb{I}_{\{y_j = x_j \text{ for every } j \neq i\}}$$

Logit Dynamics defines an ergodic Markov chain

- ▶ What is the stationary distribution π ?
- ▶ What is the stationary expected social welfare $\mathbf{E}_{\pi}[W]$?
- ► How long it takes to get close to the stationary distribution?

Some recent related works

[Montanari, Saberi, FOCS'09]:

Hitting time of the best Nash equilibrium in a classical "game" (Ising model for ferromagnetism. Applications to the spread of innovations in a network)

Some recent related works

[Montanari, Saberi, FOCS'09]:

Hitting time of the best Nash equilibrium in a classical "game" (Ising model for ferromagnetism. Applications to the spread of innovations in a network)

[Asadpour, Saberi, WINE'09]:

Hitting time of the *neighborhood* of best Nash equilibria for Atomic Selfish Routing and Load Balancing.

Some recent related works

[Montanari, Saberi, FOCS'09]:

Hitting time of the best Nash equilibrium in a classical "game" (Ising model for ferromagnetism. Applications to the spread of innovations in a network)

[Asadpour, Saberi, WINE'09]:

Hitting time of the *neighborhood* of best Nash equilibria for Atomic Selfish Routing and Load Balancing.

They study **hitting time of Nash equilibria**. We propose **stationary distribution as equilibrium concept**.

Some recent related works

[Montanari, Saberi, FOCS'09]:

Hitting time of the best Nash equilibrium in a classical "game" (Ising model for ferromagnetism. Applications to the spread of innovations in a network)

[Asadpour, Saberi, WINE'09]:

Hitting time of the *neighborhood* of best Nash equilibria for Atomic Selfish Routing and Load Balancing.

They study hitting time of Nash equilibria. We propose stationary distribution as equilibrium concept.

Nash equilibria	Stationary distribution of logit dynamics	
Not Unique	Unique	

Some recent related works

[Montanari, Saberi, FOCS'09]:

Hitting time of the best Nash equilibrium in a classical "game" (Ising model for ferromagnetism. Applications to the spread of innovations in a network)

[Asadpour, Saberi, WINE'09]:

Hitting time of the *neighborhood* of best Nash equilibria for Atomic Selfish Routing and Load Balancing.

They study hitting time of Nash equilibria. We propose stationary distribution as equilibrium concept.

Nash equilibria	Stationary distribution of logit dynamics		
Not Unique	Unique		
Local	Global		
		=	200

- ▶ If both choose the same side then Player 1 wins;
- If they choose different sides then Player 2 wins

$H \parallel +1, -1 \mid -1, +$	
'	1
T -1 , $+1$ $+1$, $-$	1

- If both choose the same side then Player 1 wins;
- ► If they choose different sides then Player 2 wins

$H \mid +1, -1 \mid -1, +1$		Н	Τ
$T \mid 1 \mid 1 \mid 1 \mid 1$	Н	+1, -1	-1, +1
$ \mid \mid \mid \mid \mid -1, \mid +1 \mid \mid +1, \mid -1 \mid$	T	-1, +1	+1, -1

No pure Nash, one mixed Nash $\sigma_1 = \sigma_2 = (1/2, 1/2)$

- If both choose the same side then Player 1 wins;
- If they choose different sides then Player 2 wins

	Н	Т
Н	+1, -1	-1, +1
Τ	-1, +1	+1, -1

No pure Nash, one mixed Nash $\sigma_1 = \sigma_2 = (1/2, 1/2)$

Logit dynamics

$$\sigma_1(H | (-, T)) =$$

- If both choose the same side then Player 1 wins;
- If they choose different sides then Player 2 wins

	Н	T
Н	+1, -1	-1, +1
T	-1, +1	+1, -1

No pure Nash, one mixed Nash $\sigma_1 = \sigma_2 = (1/2, 1/2)$

Logit dynamics

$$\sigma_1(H | (-, T)) = \frac{e^{\beta u_1(H, T)}}{e^{\beta u_1(H, T)} + e^{\beta u_1(T, T)}}$$

- If both choose the same side then Player 1 wins;
- ► If they choose different sides then Player 2 wins

	Н	T
Н	+1, -1	-1, +1
Τ	-1, +1	+1, -1

No pure Nash, one mixed Nash $\sigma_1 = \sigma_2 = (1/2, 1/2)$

Logit dynamics

$$\sigma_{1}(H | (-, T)) = \frac{e^{\beta u_{1}(H, T)}}{e^{\beta u_{1}(H, T)} + e^{\beta u_{1}(T, T)}}$$
$$= \frac{e^{-\beta}}{e^{-\beta} + e^{\beta}}$$

- If both choose the same side then Player 1 wins;
- ► If they choose different sides then Player 2 wins

	Н	T
Н	+1, -1	-1, +1
Τ	-1, +1	+1, -1

No pure Nash, one mixed Nash $\sigma_1 = \sigma_2 = (1/2, 1/2)$

Logit dynamics

$$\sigma_{1}(H | (-, T)) = \frac{e^{\beta u_{1}(H, T)}}{e^{\beta u_{1}(H, T)} + e^{\beta u_{1}(T, T)}}$$
$$= \frac{e^{-\beta}}{e^{-\beta} + e^{\beta}} = \frac{1}{1 + e^{2\beta}}$$

Logit dynamics

$$P = \frac{1}{2} \begin{pmatrix} & HH & HT & TH & TT \\ \hline HH & 1 & b & (1-b) & 0 \\ HT & (1-b) & 1 & 0 & b \\ TH & b & 0 & 1 & (1-b) \\ TT & 0 & (1-b) & b & 1 \end{pmatrix}$$

$$b = \frac{1}{1 + e^{-2\beta}}$$

ロ > (回 > (巨 > (巨 >) 巨 りへ(~)

Logit dynamics

$$P = \frac{1}{2} \begin{pmatrix} & HH & \mathbf{HT} & TH & TT \\ \hline HH & 1 & b & (1-b) & 0 \\ HT & (1-b) & 1 & 0 & b \\ TH & b & 0 & 1 & (1-b) \\ \mathbf{TT} & 0 & (\mathbf{1-b}) & b & 1 \end{pmatrix}$$

$$b=\frac{-}{1+e^{-2\beta}}$$

Logit dynamics

$$P = \frac{1}{2} \begin{pmatrix} & HH & HT & TH & TT \\ \hline HH & 1 & b & (1-b) & 0 \\ HT & (1-b) & 1 & 0 & b \\ TH & b & 0 & 1 & (1-b) \\ TT & 0 & (1-b) & b & 1 \end{pmatrix}$$

$$b=rac{1}{1+e^{-2eta}}$$

$$\pi = \frac{1}{4}(1,1,1,1)$$

$$\mathbf{E}_{\pi}\left[\mathcal{W}\right]=0$$

□ > ◆部 > ◆意 > ◆意 > 意 の Q ○

Logit dynamics

$$P = rac{1}{2} \left(egin{array}{c|ccccc} HH & HT & TH & TT \ \hline HH & 1 & b & (1-b) & 0 \ HT & (1-b) & 1 & 0 & b \ TH & b & 0 & 1 & (1-b) \ TT & 0 & (1-b) & b & 1 \ \end{array}
ight)$$

$$b = \frac{1}{1 + e^{-2\beta}}$$

$$\pi = \frac{1}{4}(1,1,1,1)$$

$$\mathbf{E}_{\pi}\left[W
ight]=0$$

$$ho$$
 $||P^3(\mathbf{x},\cdot)-\pi||<1/2$ so

$$t_{\sf mix} = \mathcal{O}(1)$$

(upper bounded by a constant for every β)

Potential games

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U}). \ \Phi : S_1 \times \cdots \times S_n \to \mathbb{R}$ exact potential if for every profile \mathbf{x} , for every player i, and for every action y

$$u_i(\mathbf{x}_{-i},y)-u_i(\mathbf{x})=-\left[\Phi(\mathbf{x}_{-i},y)-\Phi(\mathbf{x})\right]$$

Potential games

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U}). \ \Phi : S_1 \times \cdots \times S_n \to \mathbb{R}$ exact potential if for every profile \mathbf{x} , for every player i, and for every action y

$$u_i(\mathbf{x}_{-i}, y) - u_i(\mathbf{x}) = -\left[\Phi(\mathbf{x}_{-i}, y) - \Phi(\mathbf{x})\right]$$

Logit dynamics for potential games

The stationary distribution is the Gibbs one

$$\pi(\mathbf{x}) = \frac{\mathrm{e}^{-\beta\Phi(\mathbf{x})}}{Z}$$

Potential games

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U}).$ $\Phi : S_1 \times \cdots \times S_n \to \mathbb{R}$ **exact potential** if for every profile **x**, for every player *i*, and for every action *y*

$$u_i(\mathbf{x}_{-i}, y) - u_i(\mathbf{x}) = -\left[\Phi(\mathbf{x}_{-i}, y) - \Phi(\mathbf{x})\right]$$

Logit dynamics for potential games

The stationary distribution is the Gibbs one

$$\pi(\mathbf{x}) = \frac{\mathrm{e}^{-\beta\Phi(\mathbf{x})}}{Z}$$

Observation [Blume'93]

For $\beta \to \infty$ the stationary distribution π is concentrated over the global minima of the potential function.

◆ロ → ◆園 → ◆ 重 → ◆ 重 ・ 夕 Q (*)

Potential games

 $\mathcal{G} = ([n], \mathcal{S}, \mathcal{U}). \ \Phi : S_1 \times \cdots \times S_n \to \mathbb{R}$ exact potential if for every profile x, for every player i, and for every action y

$$u_i(\mathbf{x}_{-i}, y) - u_i(\mathbf{x}) = -[\Phi(\mathbf{x}_{-i}, y) - \Phi(\mathbf{x})]$$

Logit dynamics for potential games

The stationary distribution is the Gibbs one

$$\pi(\mathbf{x}) = \frac{e^{-\beta\Phi(\mathbf{x})}}{Z}$$

Observation [Blume'93]

For $\beta \to \infty$ the stationary distribution π is concentrated over the global minima of the potential function.

$$\Rightarrow \frac{\operatorname{opt}(W)}{\mathsf{E}_{\pi}[W]} \to \operatorname{Price of Stability} = \operatorname{Price of Stability} = \operatorname{Price Stabi$$

Description

- ▶ If both STOP then none wins;
- ▶ If both PASS then both lose;
- ► If one PASSes and one STOP, then who passes win.

	S	Р
S	(0,0)	(0, 1)
Р	(1,0)	(-1, -1)

Description

- ▶ If both STOP then none wins;
- ▶ If both PASS then both lose;
- If one PASSes and one STOP, then who passes win.

		S	Р
Ī	S	(0,0)	(0, 1)
	Р	(1, 0)	(-1, -1)

Two pure Nash, one mixed Nash.

Potential game: stationary distribution is for free.

Description

- ▶ If both STOP then none wins;
- ▶ If both PASS then both lose;
- If one PASSes and one STOP, then who passes win.

	S	Р
S	(0,0)	(0,1)
Р	(1,0)	(-1, -1)

Two pure Nash, one mixed Nash.

Potential game: stationary distribution is for free.

Stationary expected social welfare

$$\pi(SS) = \pi(PP) = \frac{1}{2(1+e^{\beta})}$$

 $\pi(SP) = \pi(PS) = \frac{1}{2(1+e^{-\beta})}$

$$\mathbf{E}_{\pi}\left[W
ight]=rac{\mathrm{e}^{eta}-1}{\mathrm{e}^{eta}+1}$$

Description

- ▶ If both STOP then none wins;
- ▶ If both PASS then both lose;
- If one PASSes and one STOP, then who passes win.

	S	Р
S	(0,0)	(0, 1)
Р	(1,0)	(-1, -1)

Two pure Nash, one mixed Nash.

Potential game: stationary distribution is for free.

Stationary expected social welfare

$$\pi(SS) = \pi(PP) = \frac{1}{2(1+e^{\beta})}$$

 $\pi(SP) = \pi(PS) = \frac{1}{2(1+e^{-\beta})}$

$$\mathbf{E}_{\pi}\left[W
ight]=rac{e^{eta}-1}{e^{eta}+1}$$

Observations

▶ Expected social welfare **tends to** 1 for $\beta \to \infty$;

Description

- ▶ If both STOP then none wins;
- ▶ If both PASS then both lose;
- ► If one PASSes and one STOP, then who passes win.

	S	Р
S	(0,0)	(0, 1)
Р	(1,0)	(-1, -1)

Two pure Nash, one mixed Nash.

Potential game: stationary distribution is for free.

Stationary expected social welfare

$$\pi(SS) = \pi(PP) = \frac{1}{2(1+e^{\beta})}$$

 $\pi(SP) = \pi(PS) = \frac{1}{2(1+e^{-\beta})}$

$$\mathsf{E}_{\pi}\left[W
ight] = rac{e^{eta}-1}{e^{eta}+1}$$

Observations

- ▶ Expected social welfare tends to 1 for $\beta \to \infty$;
- ► Expected social welfare is **fair**.

◆□ → ◆圖 → ◆量 → ◆量 → ● の へ ○

Mixing time

Mixing time is **exponential** in β

$$t_{\mathsf{mix}} = \Theta(e^{\beta})$$

Mixing time

Mixing time is exponential in β

$$t_{\mathsf{mix}} = \Theta(e^{eta})$$

Intuition

- The two Nash equilibria have the same stationary probability;
- ▶ When β is *large*, it takes a long time to go from one Nash equilibrium to the other one.

Mixing time

Mixing time is exponential in β

$$t_{\sf mix} = \Theta(e^eta)$$

Intuition

- ▶ The two Nash equilibria have the same stationary probability;
- ▶ When β is *large*, it takes a long time to go from one Nash equilibrium to the other one.

Generalization

Chicken Game is an anti-coordination game. The results extend to all **coordination** and **anti-coordination** games.

OR-game Definition

A ${f trivial}$ game with a ${f non-trivial}$ mixing time analysis.

Definition

A **trivial** game with a **non-trivial** mixing time analysis.

Every player has two strategies, say $\{0,1\}$, and each player pays the OR of the strategies of all players (including herself).

$$u_i(\mathbf{x}) = \left\{ egin{array}{ll} 0 & ext{if } \mathbf{x} = \mathbf{0}; \\ -1 & ext{otherwise}. \end{array}
ight.$$

Definition

A **trivial** game with a **non-trivial** mixing time analysis.

Every player has two strategies, say $\{0,1\}$, and each player pays the OR of the strategies of all players (including herself).

$$u_i(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} = \mathbf{0}; \\ -1 & \text{otherwise.} \end{cases}$$

Almost every profile is Nash equilibrium (except profiles with exactly one 1)

$$W(\text{best Nash eq.}) = 0;$$
 $W(\text{worst Nash eq.}) = -n$

Definition

A **trivial** game with a **non-trivial** mixing time analysis.

Every player has two strategies, say $\{0,1\}$, and each player pays the OR of the strategies of all players (including herself).

$$u_i(\mathbf{x}) = \left\{ egin{array}{ll} 0 & ext{if } \mathbf{x} = \mathbf{0}; \\ -1 & ext{otherwise}. \end{array}
ight.$$

Almost every profile is Nash equilibrium (except profiles with exactly one 1)

$$W(\text{best Nash eq.}) = 0;$$
 $W(\text{worst Nash eq.}) = -n$

Expected social welfare

$$\mathbf{E}_{\pi}[W] = -\frac{(2^{n} - 1)e^{-\beta}}{1 + (2^{n} - 1)e^{-\beta}} \cdot n$$

Definition

A **trivial** game with a **non-trivial** mixing time analysis.

Every player has two strategies, say $\{0,1\}$, and each player pays the OR of the strategies of all players (including herself).

$$u_i(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} = \mathbf{0}; \\ -1 & \text{otherwise.} \end{cases}$$

Almost every profile is Nash equilibrium (except profiles with exactly one 1)

$$W(\text{best Nash eq.}) = 0;$$
 $W(\text{worst Nash eq.}) = -n$

Expected social welfare

$$\mathbf{E}_{\pi}\left[W\right] = -\frac{(2^{n}-1)e^{-\beta}}{1+(2^{n}-1)e^{-\beta}} \cdot n \qquad \mathbf{E}_{\pi}\left[W\right] \to 0 \quad \text{ for } \beta \to \infty$$

OR-game Mixing time

$$t_{\mathsf{mix}} pprox \left\{ \begin{array}{ll} \mathcal{O}(n \log n) & \quad \text{if } \beta < \log n \end{array} \right.$$

コ > (同 > (注 > (注 >) 注 ・ りへ(^)

Examples 16/18

OR-game Mixing time

$$t_{\mathsf{mix}} pprox \left\{egin{array}{ll} \mathcal{O}(n \log n) & & ext{if } eta < \log n \ & \\ \Theta(n^c) & & ext{if } eta = c \log n, c > 1 ext{ constant} \end{array}
ight.$$

ロ > (同 > (き > (き >) き 夕 Q (~)

Examples 16/18

OR-game Mixing time

$$t_{\mathsf{mix}} pprox \left\{ egin{array}{ll} \mathcal{O}(n \log n) & & ext{if } eta < \log n \ \\ \Theta(n^c) & & ext{if } eta = c \log n, c > 1 ext{ constant} \ \\ \Theta(2^n) & & ext{otherwise} \end{array}
ight.$$

Examples 16/1

OR-game Mixing time

$$t_{\mathsf{mix}} pprox \left\{ egin{array}{ll} \mathcal{O}(n \log n) & & ext{if } eta < \log n \ \\ \Theta(n^c) & & ext{if } eta = c \log n, c > 1 ext{ constant} \ \\ \Theta(2^n) & & ext{otherwise} \end{array}
ight.$$

Intuition

- ▶ When β is *large* the stationary distribution is concentrated in profile $\mathbf{0}$;
- ► From a profile with at least two 1's, every players choose u.a.r. over {0,1}

(ロ) (部) (注) (注) 注 りのの

OR-game Mixing time

$$t_{\mathsf{mix}} pprox \left\{ egin{array}{ll} \mathcal{O}(n \log n) & & ext{if } eta < \log n \ \\ \Theta(n^c) & & ext{if } eta = c \log n, c > 1 ext{ constant} \ \\ \Theta(2^n) & & ext{otherwise} \end{array}
ight.$$

Intuition

- ▶ When β is *large* the stationary distribution is concentrated in profile $\mathbf{0}$;
- ► From a profile with at least two 1's, every players choose u.a.r. over {0,1}

Proof techniques:

- Path-coupling for the upper bound;
- ▶ Bottleneck ratio for the lower bound.

- (ロ) (型) (注) (注) 注 り(C

- Logit dynamics for more interesting (class of) games;
 - Potential games: Mixing time depends on the shape of the potential function (Lipschitz conditions, Number of local minima, Maximum Slope, . . .);
 - Stationary expected social welfare vs PoA / PoS for classical games;

- ▶ Logit dynamics for more *interesting* (class of) games;
 - Potential games: Mixing time depends on the *shape* of the potential function (Lipschitz conditions, Number of local minima, Maximum *Slope*, . . .);
 - Stationary expected social welfare vs PoA / PoS for classical games;
- Other randomized best response dynamics
 - E.g. All players play simultaneously;

- ▶ Logit dynamics for more *interesting* (class of) games;
 - Potential games: Mixing time depends on the *shape* of the potential function (Lipschitz conditions, Number of local minima, Maximum *Slope*, . . .);
 - Stationary expected social welfare vs PoA / PoS for classical games;
- Other randomized best response dynamics
 - E.g. All players play simultaneously;
- Connections with other disciplines
 - Statistical Physics;
 - Evolutionary biology??

- ▶ Logit dynamics for more *interesting* (class of) games;
 - Potential games: Mixing time depends on the *shape* of the potential function (Lipschitz conditions, Number of local minima, Maximum *Slope*, . . .);
 - Stationary expected social welfare vs PoA / PoS for classical games;
- Other randomized best response dynamics
 - E.g. All players play simultaneously;
- Connections with other disciplines
 - Statistical Physics;
 - Evolutionary biology??
- ▶ What happens when mixing time is exponential?
 - Chaotic behavior during transient phase?
 - ► Polynomially *almost* stationary distributions?

References

Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, and Giuseppe Persiano.

Mixing time and Stationary Expected Social Welfare of Logit Dynamics.

Submitted, 2010 (http://arxiv.org/abs/1002.3474).

References

Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, and Giuseppe Persiano.

Mixing time and Stationary Expected Social Welfare of Logit Dynamics.

Submitted, 2010 (http://arxiv.org/abs/1002.3474).

Thank you!