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◮ U = {u1, . . . , un}; ui : S1 × · · ·× Sn → R utility functions

x = (x1, . . . , xn) ∈ S1 × · · · × Sn pure Nash equilibrium if for every
i ∈ [n] and for every y ∈ Si

ui (x−i , y) 6 ui(x)

µ = (µ1, . . . , µn) ∈ ∆(S1) × · · · × ∆(Sn) mixed Nash equilibrium
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E(µ
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Best response dynamics

At her turn, player i chooses the action y ∈ Si that maximizes her
utility

ui(x−i , y) > ui (x−i , z) for every z ∈ Si

Questions

◮ Convergence
If yes then. . .

◮ Speed of convergence.
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Randomized Best Response
Logit Dynamics

Randomized Best Response: Choose for the next round strategy
y with probability proportional to the returned utility.

x ∈ S1×· · ·×Sn, i ∈ [n], y ∈ Si ⇒ σi (y | x) ∼ eβui (x−i ,y)

σi (y | x) =
eβui (x−i ,y)

∑

z∈Si
eβui (x−i ,z)

β = “Inverse noise”

Observation

◮ β = 0 players play uniformly at random;

◮ β → ∞ players play best response (u.a.r. over best responses
if more than one)
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Logit Dynamics
Description

Logit dynamics [Blume, GEB’93]

From any profile x, choose a player i ∈ [n] u.a.r and update her
action with probability σi(· | x).

x (x−i , y)

p ∼ eβui (x−i ,y)

P (x, (x−i , y)) =
1

n
σi (y | x)
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Logit dynamics [Blume, GEB’93]

From any profile x, choose a player i ∈ [n] u.a.r and update her
action with probability σi(· | x).

x (x−i , y)

p ∼ eβui (x−i ,y)

P (x, (x−i , y)) =
1

n
σi (y | x)

This process defines an ergodic Markov chain
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Markov chains
...in one slide

{Xt : t ∈ N}, (Ω,P).

◮ Irreducible: for every x, y ∈ Ω, ∃t ∈ N : P t(x, y) > 0;

◮ Aperiodic: for every x, gcd {t > 1 : P t(x , x) > 0} = 1;

◮ Stationary distribution: π ∈ ∆(Ω), πP = π.

Irreducible + Aperiodic = Ergodic =⇒
=⇒ π is unique and P t(x, ·) → π

◮ Total variation distance µ, ν ∈ ∆(Ω)

‖µ − ν‖ = max
A⊆Ω

|µ(A) − ν(A)| =
1

2

∑

x∈Ω

|µ(x) − ν(x)|

◮ Mixing Time

tmix(ε) = min{t ∈ N : ‖P t(x, ·) − π‖ 6 ε for all x ∈ Ω}
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Logit Dynamics
Definition

G = ([n],S,U). Logit dynamics for G is the Markov chain with
state space Ω = S1 × · · · × Sn and transition matrix

P(x, y) =
1

n

n
∑

i=1

eβui (x−i ,yi )

Ti(x)
I{yj=xj for every j 6=i}

Logit Dynamics defines an ergodic Markov chain

◮ What is the stationary distribution π?

◮ What is the stationary expected social welfare Eπ [W ]?

◮ How long it takes to get close to the stationary
distribution?

Framework Description 8/ 18
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Logit Dynamics
Some recent related works

[Montanari, Saberi, FOCS’09]:
Hitting time of the best Nash equilibrium in a classical “game”
(Ising model for ferromagnetism. Applications to the spread of
innovations in a network)
[Asadpour, Saberi, WINE’09]:
Hitting time of the neighborhood of best Nash equilibria for
Atomic Selfish Routing and Load Balancing.

They study hitting time of Nash equilibria. We propose stationary
distribution as equilibrium concept.

Nash equilibria Stationary distribution of logit dynamics

Not Unique Unique
Local Global
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◮ If both choose the same
side then Player 1 wins;

◮ If they choose different
sides then Player 2 wins

H T

H +1, −1 −1, +1

T −1, +1 +1, −1
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side then Player 1 wins;
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sides then Player 2 wins

H T

H +1, −1 −1, +1

T −1, +1 +1, −1

No pure Nash, one mixed Nash σ1 = σ2 = (1/2, 1/2)

Logit dynamics

Example:

σ1(H | (−,T )) =
eβu1(H,T )

eβu1(H,T ) + eβu1(T ,T )

=
e−β
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1
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Matching Pennies
Logit dynamics

P =
1

2

















HH HT TH TT

HH 1 b (1 − b) 0

HT (1 − b) 1 0 b

TH b 0 1 (1 − b)

TT 0 (1 − b) b 1

















b = 1
1+e−2β .
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Matching Pennies
Logit dynamics

P =
1

2

















HH HT TH TT

HH 1 b (1 − b) 0

HT (1 − b) 1 0 b

TH b 0 1 (1 − b)

TT 0 (1 − b) b 1

















b = 1
1+e−2β .

◮ π = 1
4 (1, 1, 1, 1)

Eπ [W ] = 0

◮ ‖P3(x, ·) − π‖ < 1/2 so

tmix = O(1)

(upper bounded by a constant for every β)
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Logit Dynamics
Potential games

G = ([n],S,U). Φ : S1 × · · · × Sn → R exact potential if
for every profile x, for every player i , and for every action y
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G = ([n],S,U). Φ : S1 × · · · × Sn → R exact potential if
for every profile x, for every player i , and for every action y

ui(x−i , y) − ui (x) = − [Φ(x−i , y) − Φ(x)]

Logit dynamics for potential games

The stationary distribution is the Gibbs one

π(x) =
e−βΦ(x)

Z

Observation [Blume’93]

For β → ∞ the stationary distribution π is concentrated over the
global minima of the potential function.

=⇒
opt(W )

Eπ [W ]
→ Price of Stability

Examples 12/ 18



Mixing Time and Stationary Expected Social Welfare of Logit Dynamics Roma, June 17, 2010

Chicken Game
Description

◮ If both STOP then none wins;

◮ If both PASS then both lose;

◮ If one PASSes and one STOP,
then who passes win.

S P

S (0, 0) (0, 1)

P (1, 0) (−1,−1)
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Chicken Game
Description

◮ If both STOP then none wins;

◮ If both PASS then both lose;

◮ If one PASSes and one STOP,
then who passes win.

S P

S (0, 0) (0, 1)

P (1, 0) (−1,−1)

Two pure Nash, one mixed Nash.
Potential game: stationary distribution is for free.

Stationary expected social welfare

π(SS) = π(PP) = 1
2(1+eβ)

π(SP) = π(PS) = 1
2(1+e−β)

Eπ [W ] =
eβ − 1

eβ + 1

Observations

◮ Expected social welfare tends to 1 for β → ∞;

◮ Expected social welfare is fair.
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Chicken Game
Mixing time

Mixing time is exponential in β

tmix = Θ(eβ)

Intuition

◮ The two Nash equilibria have the same stationary probability;

◮ When β is large, it takes a long time to go from one Nash
equilibrium to the other one.

Generalization
Chicken Game is an anti-coordination game. The results extend to
all coordination and anti-coordination games.
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(including herself).

ui (x) =

{

0 if x = 0;
−1 otherwise.

Almost every profile is Nash equilibrium (except profiles with
exactly one 1)

W (best Nash eq.) = 0; W (worst Nash eq.) = −n

Expected social welfare

Eπ [W ] = −
(2n − 1)e−β

1 + (2n − 1)e−β
· n
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Definition

A trivial game with a non-trivial mixing time analysis.

Every player has two strategies, say
{0, 1}, and each player pays the OR
of the strategies of all players
(including herself).

ui (x) =

{

0 if x = 0;
−1 otherwise.

Almost every profile is Nash equilibrium (except profiles with
exactly one 1)

W (best Nash eq.) = 0; W (worst Nash eq.) = −n

Expected social welfare

Eπ [W ] = −
(2n − 1)e−β

1 + (2n − 1)e−β
· n Eπ [W ] → 0 for β → ∞
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OR-game
Mixing time

tmix ≈















O(n log n) if β < log n

Θ(nc) if β = c log n, c > 1 constant

Θ(2n) otherwise

Intuition

◮ When β is large the stationary distribution is concentrated in
profile 0;

◮ From a profile with at least two 1’s, every players choose
u.a.r. over {0, 1}

Proof techniques:

◮ Path-coupling for the upper bound;

◮ Bottleneck ratio for the lower bound.
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Further and Future Investigations

◮ Logit dynamics for more interesting (class of) games;

◮ Potential games: Mixing time depends on the shape of the
potential function
(Lipschitz conditions, Number of local minima, Maximum
Slope, . . . );

◮ Stationary expected social welfare vs PoA / PoS for classical
games;
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Further and Future Investigations

◮ Logit dynamics for more interesting (class of) games;

◮ Potential games: Mixing time depends on the shape of the
potential function
(Lipschitz conditions, Number of local minima, Maximum
Slope, . . . );

◮ Stationary expected social welfare vs PoA / PoS for classical
games;

◮ Other randomized best response dynamics

◮ E.g. All players play simultaneously;

◮ Connections with other disciplines

◮ Statistical Physics;
◮ Evolutionary biology??

◮ What happens when mixing time is exponential?
◮ Chaotic behavior during transient phase?
◮ Polynomially almost stationary distributions?
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