next up previous
Up: transIT: A Prolog tool Previous: Download transIt


J. F. A. K. van Benthem, G. D'Agostino, A. Montanari, and A. Policriti.
Modal deduction in second-order logic and set theory-I, J. Logic Comput., 7(2):251-265, 1997.

S. Demri, E. Or\lowska.
Incomplete Information: Structure, Inference, Complexity. Springer 2002.

I. Düntsch, E. Orlowska, A. M. Radzikowska, and D. Vakarelov.
Relational Representation Theorems for Some Lattice-Based Structures. JoRMiCS, 1:132-160, 2004.

A. Formisano, E. Omodeo, E. Or\lowska, and A. Policriti.
Uniform relational frameworks for modal inferences. In: I. Düntsch and M. Winter eds., Proceedings of the Eighth International Conference on Relational Methods in Computer Science (RelMiCS 8), 2005.

A. Formisano, E. Omodeo, M. Simeoni,
A graphical approach to relational reasoning. Electr. Notes Theor. Comput. Sci., 44(3), Elsevier, 2001.

A. Formisano, E. G. Omodeo, M. Temperini.
Instructing Equational Set-Reasoning with Otter. Proceedings of IJCAR 2001. LNCS 2083, pp. 152-167, Springer, 2001.

A. Formisano, E. G. Omodeo, M. Temperini.
Layered map reasoning: An experimental approach put to trial on sets. Electr. Notes Theor. Comput. Sci., 48, Elsevier, 2001.

A. Formisano and A. Policriti.
$ T$-Resolution: Refinements and Model Elimination. J. Autom. Reasoning 22(4):433-483, Kluwer, 1999.

J. Järvinen and E. Or\lowska.
Relational correspondences for lattices with operators. In: I. Düntsch and M. Winter eds., Proceedings of the Eighth International Conference on Relational Methods in Computer Science (RelMiCS 8), pp. 111-118, 2005.

H. J. Ohlbach, A. Nonnengart, M. de Rijke, and D. Gabbay.
Encoding Two-Valued Nonclassical Logics in Classical Logic, In Handbook of Automated Reasoning, vol. II, pp. 1403-1486, Elsevier, 2001.

E. Or\lowska.
Relational interpretation of modal logics, In H. Andreka, D. Monk, and I. Nemeti eds., Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai, vol. 54, pp. 443-471, North Holland, 1988.

E. Or\lowska.
Relational semantics for nonclassical logics: formulas are relations, Philosophical Logic in Poland (J. Wolenski, ed.), pp. 167-186. Kluwer, 1994.

E. Or\lowska.
Relational proof systems for modal logics, In H. Wansing ed., Proof theory of modal logic, Applied logic series, vol.2, pp.55-78. Kluwer, 1996.

E. Or\lowska and D. Vakarelov.
Lattice-based modal algebras and modal logics. In: P. Hajek, L. Valdes, D. Westerstahl eds., Proceedings of the 12th International Congress of Logic, Methodology and Philosophy of Science, Oviedo, Spain, 2003, Elsevier.

R. Schmidt and U. Hustadt.
Mechanized reasoning and model generation for extended modal logics. In H. de Swart, E. Or\lowska, G. Schmidt, and M. Roubens, eds., Theory and Applications of Relational Structures as Knowledge Instruments, Springer, LNCS 2929, pp. 38-67, 2003.


A. Tarski and S. Givant. A formalization of Set Theory without variables, Colloquium Publications, vol. 41, American Mathematical Society, 1987.

Web resources for the Tcl/Tk toolkit:

Web reference for SICStus Prolog:

Last update: 02-08-2005 by andy